Instabilità elastica: carico di punta

\[\eta^* = -\frac{M}{EJ} \]
\[M = F\eta \]
\[\eta^* = -\frac{F}{EJ}\eta \]

\[a^2 = \frac{F}{EJ} \quad \eta^* = -a^2\eta \quad \eta'' + a^2\eta = 0 \]

\[\eta = C_1 \sin ax + C_2 \cos ax \]
\[\eta' = aC_1 \cos ax - aC_2 \sin ax \]
\[\eta'' = -a^2C_1 \sin ax - a^2C_2 \cos ax = -a^2(C_1 \sin ax + C_2 \cos ax) = -a^2\eta \]
Instabilità elastica: carico di punta

\[\eta^* = -\frac{M}{EJ}, \quad a^2 = \frac{F}{EJ} \]

\[M = F\eta, \quad \eta^* + a^2\eta = 0 \]

\[\eta^* = -\frac{F}{EJ}\eta \]

\[\eta = C_1 \sin ax + C_2 \cos ax \]

per \(x = 0 \quad \eta = 0 \)

\[0 = C_1 \sin 0 + C_2 \cos 0 \]

\[C_2 = 0 \]

\[\eta = C_1 \sin ax \]

per \(x = L \quad \eta = 0 \)

\[0 = C_1 \sin aL \]

La trave non si inflette

\[C_1 = 0 \]

\[\sin aL = 0 \]

\[aL = n\pi \]

\[a^2 = \frac{F}{EJ} \]

\[\frac{\pi^2}{L^2} = \frac{F}{EJ} \]

\[F_{cr} = \frac{EJ}{L^2} \frac{\pi^2}{L^2} \]

\[F_{cr} = \frac{EJ}{L^2} n^2 \pi^2 \]
Instabilità elastica: carico di punta

\[F_{cr} = \frac{EJ}{L^2} n^2 \pi^2 \]

Posto:
\[L = 2m \]
\[b_1 = 50mm = 0.05m \]
\[b_2 = 20mm = 0.02m \]
\[A = b_1 \cdot b_2 = 0.05 \cdot 0.02 = 0.001m^2 \]
\[J = \frac{b_1 \cdot b_2^3}{12} = \frac{0.05 \cdot 0.02^3}{12} = 3.333E - 8m^4 \]
\[E = 200GPa \]

Per \(n = 1 \):
\[F_{cr} = \frac{200E9 \cdot 3.33E - 8}{2^2} \pi^2 = 16449.3 \ N \]

Per \(n = 2 \):
\[F_{cr} = \frac{200E9 \cdot 3.33E - 8}{2^2} \pi^2 = 65797.4 \ N \]

Instabilità elastica: carico di punta
Instabilità elastica: carico di punta

\[F_{cr} = C \frac{EJ}{L^2} \pi^2 \]

PER CONDIZIONI DI VINCOLO DIVERSE

- **C = 1**
- **C = 1/4**
- **C = 2**
- **C = 4**

I coefficienti si riferiscono al primo carico critico

Per maggior sicurezza, si assume al massimo \(C = 1.2 \)

Esempio di calcolo

Si consideri l’espressione generica del carico critico introducendo il raggio d’inerzia minimo \(\rho \)

\[F_{cr} = C \frac{EJ}{L^2} \pi^2 \]

\[J = A\rho^2 \]

\[F_{cr} = C \frac{EA\rho^2}{L^2} \pi^2 \]

\[\frac{F_{cr}}{A} = C \frac{E\rho^2}{L^2} \pi^2 \]

\(L/\rho \) è detta snellezza della trave \(\lambda \)

\[\lambda = \frac{L}{\rho} \]

Carico critico unitario

\[\frac{F_{cr}}{A} = C \frac{\pi^2 E}{\lambda^2} \]
Instabilità elastica: carico di punta

Sostituendo σ_y al posto di F_{cr}/A si trova λ_{cr}

$$\lambda_{cr} = \pi \sqrt{\frac{CE}{\sigma_y}}$$

Ad esempio, per un acciaio avente tensione di snervamento di 500 Mpa, si calcola una snellezza critica pari a 62.8

Se una trave ha $\lambda > \lambda_{cr}$ Cedimento avviene per carico di punta

Se una trave ha $\lambda < \lambda_{cr}$ Cedimento avviene per snervamento

Purtroppo la formula di Eulero "funziona" bene sono nel caso di travi molto snelle; l’esperienza ha infatti mostrato rotture inaspettate in travi a "media snellezza"

Per questo si ricorre talvolta ad una formulazione parabolica, tangente alla curva di Eulero in un punto T prestabilito, ad esempio $\sigma_y/2$

$$\lambda_T = \frac{\pi^2 CE}{\sigma_y/2} = \pi \sqrt{\frac{2CE}{\sigma_y}} = \lambda_{cr} \sqrt{2}$$

Se una trave ha $\lambda > \lambda_T$ Si dimensiona seconda formula di Eulero

Se una trave ha $\lambda < \lambda_T$ Si dimensiona seconda formula quadratica di Johnson:

$$\frac{F_{cr}}{A} = \sigma_y - b\lambda^2$$

dove $b = \frac{\sigma_y^2}{2\lambda_{cr}^2} = \frac{1}{CE} \left(\frac{\sigma_y}{2\pi}\right)^2$
Instabilità elastica: carico di punta

Carico eccentrico: carico non applicato in corrispondenza del baricentro della sezione, ma spostato di una quantità e

L’equazione differenziale diventa:

$$\eta'' = -\frac{F}{EJ}(\eta + e)$$

la cui soluzione, dopo aver imposto le condizioni al contorno $\eta(0)=0$ e $\eta(L)=0$, è:

$$\eta = e \left[\tan \left(\frac{L}{2} \sqrt{\frac{P}{EJ}} \right) \sin \left(x \sqrt{\frac{P}{EJ}} \right) + \cos \left(x \sqrt{\frac{P}{EJ}} \right) - 1 \right]$$

$$f_{max} = e \sec \left(\frac{L}{2} \sqrt{\frac{P}{EJ}} \right) - 1$$

$$M_{max} = F(e + f_{max}) = F e \sec \left(\frac{L}{2} \sqrt{\frac{P}{EJ}} \right)$$

La sollecitazione di compressione sarà data dalla somma dei contributi flessionale e normale

$$\sigma_c = \frac{F}{A} + \frac{M}{J} h_{max} = \frac{F}{A} + \frac{M}{Ap^2} h_{max}$$

In mezzeria si avrà la freccia massima e la sollecitazione massima:

$$M_{max} = F(e + f_{max}) = F e \sec \left(\frac{L}{2} \sqrt{\frac{P}{EJ}} \right)$$

$$\sigma_c = \frac{F}{A} + \frac{M}{J} h_{max} = \frac{F}{A} + \frac{M}{Ap^2} h_{max}$$

$$\sigma_{c_{max}} = \frac{F}{A} \left[1 + \frac{eh_{max}}{\rho^2} \sec \left(\frac{\lambda}{2} \sqrt{\frac{P}{EA}} \right) \right]$$

Imponendo la resistenza a compressione come valore massimo per σ_c si ottiene la formula della secante:

$$F = \frac{\sigma_c A}{1 + \frac{eh_{max}}{\rho^2} \sec \left(\frac{\lambda}{2} \sqrt{\frac{P}{EA}} \right)}$$
Instabilità elastica: carico di punta

Carico eccentrico: carico non applicato in corrispondenza del baricentro della sezione, ma spostato di una quantità e

\[F = \frac{\sigma_{yc}}{A} \left(1 + \frac{eh_{\text{max}}}{\rho^2} \right) \sec \left(\frac{\lambda}{2} \sqrt{\frac{F}{EA}} \right) \]

\[\frac{eh_{\text{max}}}{\rho^2} \]

è detto rapporto di eccentricità

Carico critico unitario [MPa]

Snellezza λ

Carico critico unitario F/A [MPa]

Snellezza λ
Es 2)

Il cilindro cavo rappresentato in figura di diametro esterno D_o spessore s e lungo L è compresso tra due piatti circolari per mezzo di 4 bulloni equidistanti, disposti su una circonferenza di diametro D_o. I quattro bulloni sono avvittati a mano, i bulloni A, B e D sono serrati con una forza di 29.5 kN, mentre il bullone C con una forza di 40 kN. L’asse di simmetria del cilindro coincide con il centro della circonferenza su cui giacciono i bulloni. Determinare l’eccentricità del carico, la massima tensione di compressione, e verificare l’instabilità elastica.

DATI:

- $D_o = 40 \text{ mm}$
- $s = 4 \text{ mm}$
- $D_b = 60 \text{ mm}$
- $L = 500 \text{ mm}$

- $F_A = F_B = 29.5 \text{ kN}$
- $F_C = 40 \text{ kN}$

- Materiale = acciaio

Costruzione di Macchine (D.M. 270/04) / Elementi Costruttivi delle Macchine

Prova scritta del 21-03-2012